Предыдущий уровень изложения текущего раздела   Текущий уровень изложения предыдущего раздела   Текущий уровень изложения следующего раздела   Следующий уровень изложения текущего раздела   Уровень:


Естественный способ задания движения точки

Рассмотрим, как вычисляются скорость и ускорение точки при естественном способе задания ее движения, то есть когда заданы траектория точки и закон движения точки вдоль этой траектории в виде s = s(t).

В этом случае векторы v и a определяют по их проекциям не на оси системы координат Oxyz, а на подвижные оси P nb, имеющие начало в точке Р и движущиеся вместе с нею (см.рис.). Эти оси, называемые осями естественного трехгранника, направлены следующим образом:

Нормаль Pn, лежащая в соприкасающейся плоскости (в плоскости самой кривой, если кривая плоская),называется главной нормалью, а перпендикулярная ей нормаль Pb - бинормалью.


Определение скорости точки

Вектор скорости v точки направлен по касательной к траектории и определяется одной проекцией , равной первой производной от криволинейной координаты s этой точки по времени:

= ds / dt = .

Величину , которая может быть как положительной, так и отрицательной, называют числовым (или алгебраическим) значением скорости.

Модуль скорости v = | | и, следовательно, значения v и могут отличаться лишь знаком:


v = , если точка движется в положительном направлении отсчета координаты s, или
v = - , если точка движется в противоположном направлении.

Таким образом, величина определяет одновременно и модуль скорости, и сторону, в которую направлен вектор v вдоль касательной.


Определение ускорения точки

Вектор ускорения a точки лежит в соприкасающейся плоскости P n и определяется двумя проекциями и an (ab = 0):

Величины и an соответственно называют касательным и нормальным ускорениями точки.

Вектор ускорения a является векторной суммой касательной составляющей , напраленной вдоль касательной P , и нормальной составляющей an, направленной вдоль главной нормали Pn:

a = + an.

При этом составляющая может быть направлена или в положительном, или в отрицательном направлении оси P в зависимости от знака проекции , а составляющая an будет всегда направлена в сторону вогнутости кривой, так как проекция an 0.

Так как эти составляющие взаимно перпендикулярны, то модуль вектора a определяется по формуле:

a = ( 2 + an2 ) .

Рассмотрим теперь геометрическую характеристику траектории точки, называемую радиусом кривизны .

Радиус кривизны кривой в какой-либо ее точке равен радиусу окружности, которая наилучшим образом аппроксимирует по сравнению с другими окружностями участок кривой из малой окрестности рассматриваемой точки. Величина, обратная радиусу кривизны, называется кривизной кривой k = 1 / в данной точке.

В частности, для окружности радиус кривизны одинаков во всех ее точках и равен ее радиусу: = R (кривизна окружности k = 1 / R); для прямой радиус кривизны = (кривизна прямой k = 0).

Рассмотрим условия, при которых касательное и нормальное ускорения обращаются в нуль.

Общие формулы для вычисления касательного и нормального ускорений, а также условия обращения их в нуль, показывают, что