Трехфазные цепи являются частным случаем многофазных систем, под которыми понимают совокупность нескольких нагрузок и источников питания, имеющих одинаковую частоту и смещенных по фазе на некоторый угол друг относительно друга. Каждая пара источник-нагрузка может рассматриваться как отдельная цепь и называется фазой системы.

Если отдельные фазы системы не соединены между собой электрически (рис. 1 а)), то такую систему называют несвязанной. Несвязанная система не обладает никакими особыми свойствами, и если между фазами отсутствует и магнитная связь, то такая совокупность цепей вообще не может рассматриваться как многофазная.

Соединение фаз системы между собой (рис. 1б)) придает ей особые качества, благодаря которым многофазные системы ( в особенности трехфазные) получили исключительное распространение в области передачи и преобразования электрической энергии. Одним из очевидных преимуществ связанной системы (рис. 1) является сокращение с шести до четырех числа проводников, соединяющих источники с нагрузкой. При благоприятных обстоятельствах это число может быть уменьшено до трех. В дальнейшем мы отметим целый ряд других преимуществ, которым обладают связанные системы.

Любая многофазная система может быть симметричной и несимметричной. Симметрия системы определяется симметрией ЭДС, напряжений и токов. Под симметричной многофазной системой ЭДС, напряжений или токов понимают совокупность соответствующих величин, имеющих одинаковые амплитуды и смещенных по фазе на угол 2p /m по отношению друг к другу, где m - число фаз системы. Если для обозначения фаз трехфазной системы использовать первые буквы латинского алфавита, то симметричную систему ЭДС можно записать в виде

Ы

(1)

Аналогичные выражения можно написать и для токов и падений напряжения в симметричной трехфазной системе.

Основное свойство симметричных многофазных систем заключается в том, что сумма мгновенных значений величин образующих систему в каждый момент времени равна нулю. Для изображений величин образующих систему это свойство означает равенство нулю суммы фазных векторов. В справедливости этого утверждения легко убедиться на примере трехфазной системы, если в области изображений сложить числа в скобках в правой части выражений (1).

Многофазная система симметрична только тогда, когда в ней симметричны ЭДС, токи и напряжения. Если принять равными нулю внутренние сопротивления источников питания или включить их значения в сопротивления нагрузки, то условие симметрии системы сводится к симметрии ЭДС и равенству комплексных сопротивлений нагрузки. Это условие для трехфазной системы записывается в виде

Za = Zb = Zc .

(2)

В дальнейшем мы будем считать, что источники питания являются источниками ЭДС и использовать условия симметрии системы в виде выражений (1) и (2).


В многофазные системы объединяют источники ЭДС и нагрузки. Для обеспечения правильного соотношения сдвига фаз при соединения или связывании системы в общем случае необходимо определить выводы элементов, по отношению к которым выполняются условия (1). Они называются начало и конец фазы источника или нагрузки. Для источников многофазной системы принято за положительное направление действия ЭДС от начала к концу.

На электрических схемах, если это необходимо, начало и конец обозначают буквами латинского алфавита. На рис. 1 а) начала элементов соответствуют индексам XYZ, а концы - ABC. В дальнейшем мы будем использовать строчные буквы для нагрузки, а прописные для источников ЭДС.

Существуют два способа связывания элементов в многофазную систему - соединение звездой и соединение многоугольником. Звезда это такое соединение, в котором начала всех элементов объединены в один узел, называемый нейтральной точкой. Подключение к системе при этом осуществляется концами элементов (рис. 2 а)). Многоугольник это соединение, в котором все элементы объединены в замкнутый контур так, что у соседних элементов соединены между собой начало и конец. С системой многоугольник соединяется в точках соединения элементов. Частным случаем многоугольника является треугольник рис. 2 б).

Источники питания и нагрузки в многофазных системах в общем случае могут быть связаны разными способами.

При анализе многофазных систем вводится ряд понятий, необходимых для описания процессов. Проводники, соединяющие между собой источники и нагрузку, называются линейными проводами, а проводник соединяющий нейтральные точки источников и нагрузки - нейтральным проводом.

Электродвижущие силы источников многофазной системы (eA, EA, EA, eB, EB, EB, eC, EC, EC), напряжения на их выводах (uA, UA, UA, uB, UB, UB, uC, UC, UC) и протекающие по ним токи (iA, IA, IA, iB, IB, IB, iC, IC, IC) называются фазными. Напряжения между линейными проводами (UAB, UAB, UBC, UAC, UCA, UCA) называются линейными.

Связь линейных напряжений с фазными можно установить через разность потенциалов линейных проводов рис. 1 б) как uAB = uAN + uNB = uAN - uBN = uA - uB или в символической форме

UAB = UA - UB ; UBC = UB - UC ;

UCA = UC - UA .

(3)

Построим векторную диаграмму для симметричной трехфазной системы фазных и линейных напряжений (рис. 3). В теории трехфазных цепей принято направлять вещественную ось координатной системы вертикально вверх.

Каждый из векторов линейных напряжений представляет собой сумму одинаковых по модулю векторов фазных напряжений (Uф = UA = UB =UC), смещенных на угол 60° . Поэтому линейные напряжения также образуют симметричную систему и модули их векторов (Uл = UAB = UBC =UCA) можно определить как .

Выражения (3) справедливы как для симметричной системы, так и для несимметричной. Из них следует, что векторы линейных напряжений соединяют между собой концы фазных (вектор UCA рис. 3). Следовательно, при любых фазных напряжениях они образуют замкнутый треугольник и их сумма всегда равна нулю. Это легко подтвердить аналитически сложением выражений (3) - UAB + UBC + UCA = UA - UB + UB - UC + UC - UA = 0.

Тот факт, что геометрически векторы линейных напряжений соединяют концы векторов фазных, позволяет сделать заключение о том, что любой произвольной системе линейных напряжений соответствует бесчисленное множество фазных. Это подтверждается тем, что для создания фазной системы векторов при заданной линейной, достаточно произвольно указать на комплексной плоскости нейтральную точку и из нее провести фазные векторы в точки соединения многоугольника линейных векторов.

Из уравнений Кирхгофа для узлов a, b и c нагрузки соединенной треугольником (рис. 2 б)) можно представить комплексные линейные токи через фазные в виде

IA = Iab - Ica ; IB = Ibc - Iab ; IC = Ica - Ibc .

(4)

В случае симметрии токов IA = IB = IC = Iл и Iab = Ibc = Ica = Iф, поэтому для них будет справедливо такое же соотношение, как для линейных и фазных напряжений в симметричной системе при соединении звездой, т.е . Кроме того, их сумма в каждый момент времени будет равна нулю, что непосредственно следует из суммирования выражений (4).


Перейдем теперь к рассмотрению конкретных соединений трехфазных цепей.

Пусть фазы источника и нагрузки соединены звездой с нейтральным проводом (рис. 4а)). При таком соединении нагрузка подключена к фазам источника и UA = Ua , UB = Ub и UC = Uc., а IA = Ia , IB = Ib и IC = Ic. Отсюда по закону Ома токи в фазах нагрузки равны

Ia = UA/Za ; Ib = UB/Zb и

Ic = UC/Zc.

(5)

Ток в нейтральном проводе можно определить по закону Кирхгофа для нейтральной точки нагрузки. Он равен

IN =Ia +Ib +Ic .

(6)

Выражения (5) и (6) справедливы всегда, но в симметричной системе Za = Zb = Zc= Z, поэтомуIN =Ia +Ib +Ic= UA/Za+UB/Zb+UC/Zc = (UA+UB+UC)/Z = 0, т.к. по условию симметрии UA+UB+UC=0. Следовательно, в симметричной системе ток нейтрального провода равен нулю и сам провод может отсутствовать. В этом случае связанная трехфазная система будет передавать по трем проводам такую же мощность, как несвязанная по шести. На практике нейтральный провод в системах передачи электроэнергии сохраняют, т.к. его наличие позволяет получать у потребителя два значения напряжения - фазное и линейное (127/220 В, 220/380 В и т.д.). Однако сечение нейтрального провода обычно существенно меньше, чем у линейных проводов, т.к. по нему протекает только ток, создаваемый асимметрией системы.

При симметричной нагрузке токи во всех фазах одинаковы и смещены по отношению друг к другу на 120° . Их модули или действующие значения можно определить как I = Uф/Z.

Векторные диаграммы для симметричной и несимметричной нагрузки в системе с нейтральным проводом приведены на рис. 4 б) и в).


При отсутствии нейтрального провода сумма токов в фазах нагрузки равна нулю Ia+Ib+Ic =0. В случае симметричной нагрузки режим работы системы не отличается от режима в системе с нейтральным проводом.

При несимметричной нагрузке между нейтральными точками источника и нагрузки возникает падение напряжения. Его можно определить по методу двух узлов, перестроив для наглядности схему рис. 5 а). В традиционном для теории электрических цепей начертании она будет иметь вид рис. 5 б). Отсюда

,

(7)

где Ya=1/Za, Yb=1/Zb, Yc=1/Zc - комплексные проводимости фаз нагрузки.

Напряжение UnN представляет собой разность потенциалов между нейтральными точками источника и нагрузки. По схеме рис. 5 б) его можно представить также через разности фазных напряжений источника и нагрузки UnN = UA - Ua = UB - Ub = UC - Uc. Отсюда фазные напряжения нагрузки

Ua = UA - UnN ; Ub = UB - UnN ; Uc = UC - UnN .

(8)

Токи в фазах нагрузки можно определить по закону Ома

Ia = Ua/Za ; Ib = Ub/Zb ; Ic = Uc/Zc.

(9)

Векторные диаграммы для симметричной и несимметричной нагрузки приведены на рис. 6. Диаграммы симметричного режима (рис. 6 а)) ничем не отличаются от диаграмм в системе с нулевым проводом.

Диаграммы несимметричного режима (рис. 6 б)) иллюстрируют возможность существования множества систем фазных напряжений для любой системы линейных. Здесь системе линейных напряжений UAB UBC UCA соответствуют две системы фазных. Фазные напряжения источника UA UB UC и фазные напряжения нагрузки Ua Ub Uc..


В трехфазных цепях нагрузка и источник могут быть соединены по-разному. В частности нагрузка, соединенная треугольником, может быть подключена к сети, в которой источник питания соединен звездой (рис. 7 а)).

При этом фазы нагрузки оказываются подключенными на линейные напряжения

Uab= UAB ; Ubc =UBC ; Uca = UCA.

Токи в фазах можно найти по закону Ома

Iab = Uab/Zab ; Ibc = Ubc/Zbc ;

Ica = Uca/Zca,

а линейные токи из уравнений Кирхгофа для узлов треугольника нагрузки

IA = Iab - Ica ; IB = Ibc - Iab ; IC = Ica - Ibc .

(10)

Векторы фазных токов нагрузки на диаграммах для большей наглядности принято строить относительно соответствующих фазных напряжений. На рис. 7 б) векторные диаграммы построены для случая симметричной нагрузки. Как и следовало ожидать, векторы фазных и линейных токов образуют симметричные трехфазные системы.

На рис. 7 в) построена векторная диаграмма для случая разных типов нагрузки в фазах. В фазе ab нагрузка чисто резистивная, а в фазах bc и ca индуктивная и емкостная. В соответствии с характером нагрузки, вектор Iab совпадает по направлению с вектором Uab; вектор Ibc отстает, а вектор Ica опережает на 90° соответствующие векторы напряжений. После построения векторов фазных токов можно по выражениям (10) построить векторы линейных токов IA, IB и IC.


Трехфазная цепь является совокупностью трех однофазных цепей, поэтому ее мощность может быть определена как сумма мощностей отдельных фаз.

При соединении звездой активная мощность системы будет равна

P = Pa + Pb + Pc = UaIacosj a + UbIbcosj b + UcIccosj c =

=Ia2Ra + Ib2Rb + Ic2Rc ,

(11)

а реактивная

Q = Qa + Qb + Qc = UaIasinj a + UbIbsinj b + UcIcsinj c =

=Ia2Xa + Ib2Xb + Ic2Xc .

(12)

Если нагрузка соединена треугольником, то активная и реактивная мощности будут равны

P = Pab + Pbc + Pca = UabIabcosj ab + UbcIbccosj bc + UcaIcacosj ca =

=Iab2Rab + Ibc2Rbc + Ica2Rca ,

(13)

Q = Qab + Qbc + Qca = UabIabsinj ab + UbcIbcsinj bc + UcaIcasinj ca =

=Iab2Xab + Ibc2Xbc + Ica2Xca .

(14)

Полную мощность можно определить из треугольника мощностей как

.

(15)

Следует обратить внимание на то, что полная мощность трехфазной цепи не является суммой полных мощностей фаз.

При симметричной нагрузке мощности всех фаз одинаковы, поэтому полная мощность и ее составляющие для соединения звездой будут равны

(16)

При соединении нагрузки треугольником

(17)

Из выражений (16) и (17) следует, что полная мощность трехфазной сети и ее составляющие при симметричной нагрузке могут быть определены по линейным токам и напряжениям независимо от схемы соединения.